References on Clifford Algebras and Spinors


Ablamowicz R., Fauser, B. (eds.), Clifford Algebras and their Applications in Mathematical Physics, Vol 1:Algebra and Physics, Birkhauser, Boston (2000)
Ablamowicz. R. (ed.), Clifford Algebras, Progress in Mathematical Physics 34, Birkhauser, Boston (2004)
Ablamowicz. R. and Sobczyk (eds.), G., Lectures on Clifford (Geometric) Algebras and Applications, Birkhauser, Boston (2004)
L. V. Ahlfors, Möbius Transformations and Clifford Numbers, Springer, Berlin (1985)
Pierre Anglès, Conformal Groups in Geometry and Spin Structures, Progress in Mathematical Physics, Birkhauser, Vol. 50 (2007)
Pierre Anglès,Artibano Micali†, Daniel Parrochia, L'unification des mathématiques (algèbres géométriques, géométrie algébrique et philosophie de Langlands), Hermes, Lavoisier (2012)
E. Artin, Geometric Algebra, Interscience, New York (1957)
A. Baker, Matrix Groups. An Introduction to Lie Group Theory, Chapters 4,5, Springer, London 2002
Baylis, W. E. (ed.), Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Enginnering, Birkhauser, Boston (1996)
W. E. Baylis, Electrodynamics, A Modern Geometric Approach, Birkhäuser, Boston (1999)
I. Benn and R. Tucker, An introduction to Spinors and Geometry, Adam Hilger (1987)
N. Bourbaki,   Algèbre , Eléments de mathématiques , Hermann  (1970)  pp. Chapt. II: Algèbre linéaire, Chapt 9: Formes
sesquilineaires et quadratiques}
Brackx, F., R. Delanghe, and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76. Pitman, London (1982)
E. Cartan, The Theory of Spinors, MIT Press, Cambridge (1967)
C. Chevalley,, The Algebraic Theory of Spinors and Clifford Algebras. Collected Works vol. 2, Springer-Verlag, Berlin (1997)
Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C., Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics , Vol. 39, Birkahuser, Boston ( 2004)
R. Coquereaux, A. Jadczyk, Riemannian Geometry, Fiber Bundles, Kaluza-Klein Theories and all That, World Scientific, Singapore (1988), pp.Chapt. 6.5-6.9 and Chapt. 8: Dimensional reduction of the orthogonal bundle and of the spin bundle
Bayro-Corrochano, E., Geometrical Computing for Perception Action Systems, Springer, Berlin (2001)
Budinich, P., and Trautman, A., The Spinorial Chessboard, Springer, Berlin (1998)
Moshe Carmeli, Shimon Malin, Theory of Spinors: An Introduction, World Scientific, Singapore (2000)
E.M. Corson, Introduction to tensors, spinors, and relativistic wave-equations , Chelsea (1953)
A. Crumeyrolle, Orthogonal and Sympletic Clifford Algebras, Kluwer, Dordrecht (1990)
Daviau, C., Equation de Dirac non Lineaire, These de Doctorat, Univ. de Nantes (1993)
Deheuvels, Rene, Formes quadratiques et groupes classiques, Presses Universitaires De France, Paris (1981)
Deheuvels, Rene, Tenseurs et Spineurs, Presses Universitaires De France, Paris (1993)
R. Delanghe, F. Sommen and V. Soucek, Clifford Algebra and Spinor-Valued Functions, Kluwer Academic Publisher, Dordrecht, Boston (1992)
J. Dieudonne, La Géométrie des groupes classiques, Springer, Berlin (1955)
Chris Doran and Anthony Lasenby, Geometric Algebra for Physicists, Cambridge University Press, Cambridge (2003)
Dorst, L., Doran C., Lasenby J. (eds.), Applications of Geometric Algebra in Computer Science and Engineering, Birkhauser, Boston (2002)
Fecko, Marián, Differential Geometry and Lie Groups for Physicists, Cambdrige University Press, 2006; especially Chapter. 22.1, Clifford algebras C(p,q)
Fernandez, V. V., Moya, A. M. and Rodrigues, W. A., Jr., Covariant Derivatives on Minkowski Manifolds, in Ablamowicz R., Fauser, B. (eds.), Clifford Algebras and their Applications in Mathematical Physics, Vol 1:Algebra and Physics, pp.367-392, Birkhauser, Boston (2000)
Gilbert, J. E., and M. A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge University Press, Cambridge (1991)
Patrick R. Girard, Quaternions, Clifford Algebras and Relativistic Physics, Birkhäuser Basel (2007)
K. Gürlebeck, W. Sprössig, Quaternionic and Clifford Calculus for Physicists and Engineers, Wiley, Chichester (1997)
Alexander  J.Hahn,
Quadratic Algebras,Clifford Algebras and Arithmetic Witt Groups, Springer-Verlag, New York (1994)
K. Gürlebeck, Klauss Habetha, W. Sprössig, Holomorphic Functions in the Plane and n-dimensional Space, Birkhäuser, Basel 2008
F. Reese Harvey, Spinors and Calibrations, Academic Press, Boston (1990)
Michiel Hazewinkel (ed), Encyclopaedia of Mathematics, Springer, Berlin (2002), pp. Clifford Algebra and Spinor Representation
Jacques Helmstetter, Artibano Micali, Quadratic Mappings and Clifford Algebras, Birkhäuser, Basel 2008
Hermann, R., Spinors, Clifford and Caley Algebras, Interdisciplinariy Mathematics vol. VII, Depart. Math., Rutgers Univ., New Brunswick, NJ (1974)
Hestenes, D ,Space-time Algebra, Gordon & Breach, New York (1966)
Hestenes, D., and G. Sobczyk, Clifford Algebra to Geometric Calculus, D. Reidel Publishing Company, Dordrecht (1984)
Hestenes, D., New Foundations for Classical Mechanics, Kiuwer Academic Publishers, Dordrecht (1986)
Hladik, J., Spinors in Physics, Springer-Verlag, Berlin (1999)
D. A. Hurley, M. A. Vandyck, Geometry Spinors and Applications, Springer and Praxis Publishing, Chichester (2000)
B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics, World Scientific, Singapore (1988)
Max Karoubi, K-Theory. An Introduction, Springer (1978)
Knus, M. A., Quadratic Forms, Clifford Algebras and Spinors, Univ. Estadual de Campinas (UNICAMP), Campinas (1988)
T.Y. Lam, Algebraic Theory of Quadratic Forms, Addison-Wesley (1980)
H. B. Lawson and M. L. Michelsohn, Spin Geometry, Princeton Univ. Press (1989)
P. Lounesto, Clifford Algebras and Spinors, Cambridge University Press, Cambridge (1997)
M. Morand, Géométrie spinorielle, Masson, Paris (1973)
O.T. O'Meara,   Introduction to quadratic forms, Springer (1973)
R. Penrose and W. Rindler, Spinors and Spacetime, vol.1, 2: Spinor and Twistor Methods in Spacetime Geometry, Cambridge Univ. Press, Cambridge (1986)
I. Porteous, Topological Geometry, 2nd edition, Cambridge University Press, Cambridge (1981)
I. Porteous, Clifford Algebras and the Classical Groups, Cambridge Univ. Press, Cambridge (1995)
A. Pressley and G. Segal, Loop Groups, Clanderon Press, Oxford (1986), pp. Chapt 12: Spinor Representation
Marcel Riesz, Clifford Numbers and Spinors, Kluwer Academic Publisher, Dordrecht/Boston (1993)
Ichiro Satake, Algebraic Structures of Symmetric Domains, Princeton University Press (1980), pp. Appendix
Seguins Pazzis (de), Clément, Invitation aux formes quadratiques, Calvage & Mounet, Paris (2010)
Snygg, J., Clifford Algebra A Computational Tool for Physicists, Oxford University Press, Oxford (1997)
Sommer G. (ed.), Geometric Computing with Clifford Algebra, SpringerVerlag, Heidelberg (2000)
R. Ward and R. Wells, Twistor Geometry and Field Theory, Cambridge University Press, Oxford (1990)

Updated May 15, 2008